Functional p53 chimeras containing the Epstein-Barr virus Gly-Ala repeat are protected from Mdm2- and HPV-E6-induced proteolysis.
نویسندگان
چکیده
Functional inactivation of the tumor suppressor protein p53 by accelerated ubiquitin/proteasome-dependent proteolysis is a common event in tumor progression. Proteasomal degradation is inhibited by the Gly-Ala repeat (GAr) of the Epstein-Barr virus nuclear antigen-1, which acts as a transferable element on a variety of proteasomal substrates. We demonstrate that p53 chimeras containing GAr domains of different lengths and positions within the protein are protected from proteolysis induced by the ubiquitin ligases murine double minute 2 and E6-associated protein but are still ubiquitinated and retain the capacity to interact with the S5a ubiquitin-binding subunit of the proteasome. The GAr chimeras transactivate p53 target genes, induce cell cycle arrest and apoptosis, and exhibit improved growth inhibitory activity in tumor cells with impaired endogenous p53 activity.
منابع مشابه
Inhibition of ubiquitinyproteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein–Barr virus nuclear antigen
The Epstein–Barr virus (EBV) encoded nuclear antigen (EBNA) 1 is expressed in latently infected B lymphocytes that persist for life in healthy virus carriers and is the only viral protein regularly detected in all EBV associated malignancies. The Gly-Ala repeat domain of EBNA1 was shown to inhibit in cis the presentation of major histocompatibility complex (MHC) class I restricted cytotoxic T c...
متن کاملThe relationship between Human Papillomavirus and Epstein-Barr virus infections with breast cancer of Iranian patients
Background: Breast cancer is the malignancy in humans and other mammals. Several risk factors are involved in their appearance such as higher hormone levels and obesity. Identification of a mouse mammary tumor virus supports a viral etiology for breast tumors in animals. Viruses have been implicated in the development of various cancers, but viral induction for formation breast cancer is contro...
متن کاملTHE IN VITRO GROWTH PROPERTIES OF CELL LINES FROM EPSTEIN-BARR VIRUS-INDUCED TAMARIN TUMORS AND TAMARIN B CELLS TR ANSFORMED BY EPSTEIN BARR VIRUS
EBV-carrying human cell lines, depending on whether the cells are derived from Burkitt's lymphoma (BL) tumor biopsies or transformed by EBV in vitro, have different growth properties in vitro. In contrast, there are no clear differences between tamarin tumor lines and tamarin LCLs in vitro. Both types of tamarin cell lines could grow in agarose and formed colonies unlike human LCLs, althoug...
متن کاملRepeat sequence of Epstein-Barr virus-encoded nuclear antigen 1 protein interrupts proteasome substrate processing.
The Epstein-Barr virus thwarts immune surveillance through a Gly-Ala repeat (GAr) within the viral Epstein-Barr virus-encoded nuclear antigen 1 protein. The GAr inhibits proteasome processing, an early step in antigen peptide presentation, but the mechanism of proteasome inhibition has been unclear. By embedding a GAr within ornithine decarboxylase, a natural proteasome substrate that does not ...
متن کاملComplete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells.
The E6 oncoprotein of human papillomaviruses (HPVs) that are associated with cervical cancer utilizes the cellular ubiquitin-protein ligase E6-AP to target the tumor suppressor p53 for degradation. In normal cells (i.e., in the absence of E6), p53 is also a target of the ubiquitin-proteasome pathway. Under these conditions, however, p53 degradation is mediated by Mdm2 rather than by E6-AP. Here...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 3 شماره
صفحات -
تاریخ انتشار 2002